Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Med Care ; 62(4): 225-234, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38345863

RESUMO

OBJECTIVE: Length of stay (LOS) is an important metric for the organization and scheduling of care activities. This study sought to propose a LOS prediction method based on deep learning using widely available administrative data from acute and emergency care and compare it with other methods. PATIENTS AND METHODS: All admissions between January 1, 2011 and December 31, 2019, at 6 university hospitals of the Hospices Civils de Lyon metropolis were included, leading to a cohort of 1,140,100 stays of 515,199 patients. Data included demographics, primary and associated diagnoses, medical procedures, the medical unit, the admission type, socio-economic factors, and temporal information. A model based on embeddings and a Feed-Forward Neural Network (FFNN) was developed to provide fine-grained LOS predictions per hospitalization step. Performances were compared with random forest and logistic regression, with the accuracy, Cohen kappa, and a Bland-Altman plot, through a 5-fold cross-validation. RESULTS: The FFNN achieved an accuracy of 0.944 (CI: 0.937, 0.950) and a kappa of 0.943 (CI: 0.935, 0.950). For the same metrics, random forest yielded 0.574 (CI: 0.573, 0.575) and 0.602 (CI: 0.601, 0.603), respectively, and 0.352 (CI: 0.346, 0.358) and 0.414 (CI: 0.408, 0.422) for the logistic regression. The FFNN had a limit of agreement ranging from -2.73 to 2.67, which was better than random forest (-6.72 to 6.83) or logistic regression (-7.60 to 9.20). CONCLUSION: The FFNN was better at predicting LOS than random forest or logistic regression. Implementing the FFNN model for routine acute care could be useful for improving the quality of patients' care.


Assuntos
Serviços Médicos de Emergência , Hospitalização , Humanos , Tempo de Internação , Hospitais , Redes Neurais de Computação , Estudos Retrospectivos
2.
Sci Rep ; 13(1): 18925, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37919324

RESUMO

Due to the impact of COVID-19, a significant influx of emergency patients inundated the intensive care unit (ICU), and as a result, the treatment of elective patients was postponed or even cancelled. This paper studies ICU bed allocation for three categories of patients (emergency, elective, and current ICU patients). A two-stage model and an improved Non-dominated Sorting Genetic Algorithm II (NSGA-II) are used to obtain ICU bed allocation. In the first stage, bed allocation is examined under uncertainties regarding the number of emergency patients and their length of stay (LOS). In the second stage, in addition to including the emergency patients with uncertainties in the first stage, it also considers uncertainty in the LOS of elective and current ICU patients. The two-stage model aims to minimize the number of required ICU beds and maximize resource utilization while ensuring the admission of the maximum number of patients. To evaluate the effectiveness of the model and algorithm, the improved NSGA-II was compared with two other methods: multi-objective simulated annealing (MOSA) and multi-objective Tabu search (MOTS). Drawing on data from real cases at a hospital in Lyon, France, the NSGA-II, while catering to patient requirements, saves 9.8% and 5.1% of ICU beds compared to MOSA and MOTS. In five different scenarios, comparing these two algorithms, NSGA-II achieved average improvements of 0%, 49%, 11.4%, 9.5%, and 17.1% across the five objectives.


Assuntos
Hospitalização , Unidades de Terapia Intensiva , Humanos , Incerteza , Tempo de Internação , Cuidados Críticos
3.
Med Care ; 59(10): 929-938, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34310455

RESUMO

OBJECTIVE: This systematic review sought to establish a picture of length of stay (LOS) prediction methods based on available hospital data and study protocols designed to measure their performance. MATERIALS AND METHODS: An English literature search was done relative to hospital LOS prediction from 1972 to September 2019 according to the PRISMA guidelines. Articles were retrieved from PubMed, ScienceDirect, and arXiv databases. Information were extracted from the included papers according to a standardized assessment of population setting and study sample, data sources and input variables, LOS prediction methods, validation study design, and performance evaluation metrics. RESULTS: Among 74 selected articles, 98.6% (73/74) used patients' data to predict LOS; 27.0% (20/74) used temporal data; and 21.6% (16/74) used the data about hospitals. Overall, regressions were the most popular prediction methods (64.9%, 48/74), followed by machine learning (20.3%, 15/74) and deep learning (17.6%, 13/74). Regarding validation design, 35.1% (26/74) did not use a test set, whereas 47.3% (35/74) used a separate test set, and 17.6% (13/74) used cross-validation. The most used performance metrics were R2 (47.3%, 35/74), mean squared (or absolute) error (24.4%, 18/74), and the accuracy (14.9%, 11/74). Over the last decade, machine learning and deep learning methods became more popular (P=0.016), and test sets and cross-validation got more and more used (P=0.014). CONCLUSIONS: Methods to predict LOS are more and more elaborate and the assessment of their validity is increasingly rigorous. Reducing heterogeneity in how these methods are used and reported is key to transparency on their performance.


Assuntos
Hospitalização , Tempo de Internação/tendências , Bases de Dados Factuais , Previsões , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...